2024

MATHEMATICS — HONOURS

Paper: CC-3

(Real Analysis)

Full Marks: 65

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

N, Q, R denote the set of all natural, rational and real numbers respectively.

Notations and symbols have their usual meanings.

- Answer all the following multiple choice questions. For each question 1 mark is for choosing the correct option and 1 mark is for justification. (1+1)×10
 - (a) The derived set of the set $S = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$ is
 - (i)

(ii) {0}

(iii) [0, 1] ∩ Q

- (iv) [0, 1].
- (b) Let S = (0, 3) and $T = \bigcap_{n=1}^{\infty} \left(1 \frac{1}{n}, 2 + \frac{1}{n}\right)$. Then $S \cap (\mathbb{R} T)$ is
 - (i) open but not closed
- (ii) closed but not open
- (iii) both open and closed
- (iv) neither open nor closed.
- (c) The set $\{\sqrt{2} + r\sqrt{3} : r \in \mathbb{Q}\}$ is
 - (i) uncountable

(ii) enumerable

(iii) finite

- (iv) dense in R.
- (d) Let S be a non-empty subset of \mathbb{R} . Which of the following is true?
 - (i) If S is bounded, then S has a limit point.
 - (ii) If S is closed and $x \in S$, then x is a limit point of S.
 - (iii) If $x \notin S$, then x is an exterior point of S.
 - (iv) If S is open and $x \in S$, then x is a limit point of S.

- (e) The sequence $\left\{ \left(\frac{3}{4}\right)^n + \left(\frac{4}{5}\right)^n \right\}$
 - (i) diverges to ∞
- (ii) converges to '2'
- (iii) converges to $\frac{31}{20}$
- (iv) converges to '0'.
- (f) Let $u_n = \cos n\pi$. Then $\lim_{n\to\infty} \sup u_n$ is equal to
 - (i) -2

(ii) 0

(iii) 1

- (iv) −1.
- (g) The sequence $\left\{\frac{1}{n} + n\right\}$
 - (i) converges to 0
- (ii) converges to 1
- (iii) diverges to ∞
- (iv) is oscillatory.
- (h) Which of the following sequences is not a Cauchy sequence?
 - (i) $\left\{\frac{(-1)^n}{n}\right\}$

(ii) $\left\{\frac{1}{2^n}\right\}$

(iii) $\{n^n\}$

- (iv) $\left\{ \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} \right\}$.
- (i) If $\{a_n\}$ is a convergent sequence, then $\left\{\frac{\displaystyle\sum_{i=1}^n a_i}{n}\right\}$ is
 - (i) bounded but not necessarily convergent
 - (ii) convergent and converges to $\lim_{n\to\infty} a_n$
 - (iii) divergent
 - (iv) oscillatory.

- (j) The series $\left(\frac{1}{1.2} + \frac{1}{2.3} + ... + \frac{1}{n(n+1)} + ...\right)$ is
 - (i) a divergent series
 - (ii) convergent and sum is '0'
 - (iii) a convergent series and the sum is '1'
 - (iv) oscillatory.

Unit - 1

Answer any four questions.

- 2. (a) Prove and disprove: A countable set can never have uncountable number of limit points.
 - (b) Find all the isolated points of $\left\{\frac{n}{n+1}: n \in \mathbb{N}\right\} \cup \{2,3\}$.
- 3. Prove or disprove:
 - (a) If S, T are non-empty bounded subset of \mathbb{R} , then $\sup(S-T) = \sup S \sup T$.
 - (b) The set $A = \{x + y : x \in \mathbb{Q}, y \in \mathbb{R} \setminus \mathbb{Q}\}$ is countable.
- 4. (a) Prove or disprove: Every enumerable set has a limit point.
 - (b) Prove that every bounded open interval has a limit point.
- 5. (a) Prove or disprove: Every bounded infinite set has an interior point.
 - (b) Let a and b be two real numbers such that a < b. Show that there is a rational number q such that a < q < b.
- 6. Prove that ℝ has only two subsets which are both open and closed.
- 7. (a) Prove that arbitrary union of open set is open.
 - (b) Show that the set S is an open set, where

$$S = \{x \in \mathbb{R} : x^2 - 5x + 6 > 0\}.$$
 3+2

- **8.** (a) Is the set $S = \left\{ x \in \mathbb{R} : \sin \frac{1}{x} = 0 \right\}$ enumerable? Justify.
 - (b) Prove that the union of two enumerable sets is enumerable. 2+3

3+2

Unit - 2

Answer any four questions.

9. (a) Prove or disprove:

The sequence $\{x_n\}$ where $x_n = \frac{n}{2} - \left[\frac{n}{2}\right]$ is convergent. ([x] denotes the largest integer not exceeding x).

(b) Show that $\lim_{n \to \infty} n^n = 1$.

- 10. (a) Give examples of two non-convergent sequences $\{x_n\}$ and $\{y_n\}$ such that both the sequences $\{x_ny_n\}$ and $\{x_n/y_n\}$ are convergent.
 - (b) If for a sequence $\{x_n\}$ of real numbers $\lim_{n\to\infty} x_{2n-1} = \lim_{n\to\infty} x_{2n}$, then prove that $\{x_n\}$ is convergent.
- 11. Prove that every monotonically increasing sequence which is bounded above is convergent. What happens if the sequence is unbounded above? Justify.
- 12. State and prove Cauchy's first limit theorem. Show that $\lim_{n\to\infty} \frac{1+\frac{1}{2}+...+\frac{1}{n}}{n} = 0.$ (1+3)+1
- 13. (a) Prove that product of two convergent sequences is convergent.
 - (b) $\{x_n\}$ and $\{y_n\}$ are two sequences such that $x_n \ge 1 \ \forall n \in \mathbb{N}$ and $\lim_{n \to \infty} (x_n y_n) = 0$. Prove that

$$\lim_{n \to \infty} \frac{y_n}{x_n} = 1.$$

14. Define Cauchy sequence. Show that the sequence $\{x_n\}$ is a Cauchy sequence, where

$$x_n = 1 - \frac{1}{2} + \frac{1}{3} + \dots + (-1)^{n-1} \frac{1}{n}$$
.

15. Define subsequence of a sequence of real numbers. Prove that a bounded sequence $\{x_n\}$ is convergent if and only if $\limsup x_n = \liminf x_n$.

Unit - 3

Answer any one question.

- 16. State and prove Leibnitz's test. Using it show that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2 + 1}$ is convergent. (1+3)+1
- 17. (a) Prove or disprove:

If $\sum_{n} a_n$ is a convergent series of real numbers, then $\sum_{n} a_n^2$ is also convergent.

(b) Test convergence of the infinite series whose *n*-th term is $\frac{2^2 \cdot 4^2 \cdot 6^2 \dots (2n)^2}{3^2 \cdot 5^2 \cdot 7^2 \dots (2n-1)^2}.$